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Abstract In order to obtain detailed information from mul-
tiple telescope observations a general blind super-resolution
(SR) reconstruction approach for astronomical images is
proposed in this paper. A pixel-reliability-based SR recon-
struction algorithm is described and implemented, where the
developed process incorporates flat field correction, auto-
matic star searching and centering, iterative star matching,
and sub-pixel image registration. Images captured by the
1-m telescope at Yunnan Observatory are used to test the
proposed technique. The results of these experiments indi-
cate that, following SR reconstruction, faint stars are more
distinct, bright stars have sharper profiles, and the back-
grounds have higher details; thus these results benefit from
the high-precision star centering and image registration pro-
vided by the developed method. Application of the proposed
approach not only provides more opportunities for new dis-
coveries from astronomical image sequences, but will also
contribute to enhancing the capabilities of most spatial or
ground-based telescopes.
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1 Introduction

Telescopes remain highly useful tools in the field of as-
tronomical observation, facilitating important discoveries.
However, higher resolutions for captured observations in
charge-coupled device (CCD) frames using telescope imag-
ing systems are desired, because the additional details pro-
vided in the resultant images would yield a higher prob-
ability of new discoveries. Additionally, most applications
such as object detection, recognition, tracking, or high-
precision positioning would benefit from higher-resolution
observation frames. Telescopes with larger diameters pro-
duce higher-resolution CCD frames, but are also signifi-
cantly more expensive to manufacture and maintain. An al-
ternative solution to these problems is to improve the image
resolutions using post-processing techniques.

The resolutions of astronomical observations are theoret-
ically determined by the telescope diffraction limit (Wang
et al. 2015). For ground-based systems, the angular resolu-
tions are reduced significantly by atmospheric turbulence.
However, near diffraction-limited images can be acquired
under certain conditions using AO (Bennet et al. 2016) and
LI (Cagigal et al. 2016; Law et al. 2006) methods, which
can compensate for the atmospheric distortions. Further, res-
olution enhancement requires efforts to break the telescope
diffraction barrier.

Super-resolution (SR) image reconstruction is a resolu-
tion enhancement process through which high-resolution
(HR) images are produced from one or more low-resolution
(LR) observed images (Park et al. 2003); this allows images
to be recovered with a higher resolution than the diffrac-
tion limit (Neice 2010). Different from general deconvolu-
tion approaches to remove the blur indicated by the point
spread function (PSF), or classic denoising techniques to
improve signal-to-noise ratios (SNRs) for astronomical im-
ages, in SR reconstruction, several frames are mapped onto
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Fig. 1 SR reconstruction
process for astronomical
observations

one image. This approach is not employed to deblur or de-
noise, but rather as an image fusion method to re-compute
the pixel values on an up-sampled scale. According to the
Nyquist Sampling Theorem, the sinc-function can be used
to perfectly reconstruct band-limited signals within half the
sample rate, but cannot recover higher-frequency signals;
this may cause problems as a result of aliasing (Stone et al.
2001). Therefore, a radical method of reconstructing details
beyond the diffraction limit of an imaging system is to im-
prove the sampling rate, which means more samples are ac-
quired and more information is obtained from the original
signals.

In summary, algorithms based on blind deconvolution
or denoising may be used to reconstruct near-diffraction-
limited images. In contrast, benefiting from more informa-
tion from samples obtained in more than one observation,
SR reconstruction provides opportunities to recover details
beyond the diffraction limit. Note that, if necessary, general
deconvolution or denoising methods can be applied before
or after the SR process.

However, because of the great difference between ob-
served frames captured by telescopes and image sequences
acquired by common cameras, there exist considerable dif-
ficulties in applying SR technology to astronomical image
processing. On one hand, popular image registration algo-
rithms based on feature extraction and matching are not di-
rectly applicable to astronomical images; On the other hand,
to obtain more details from a telescope-observed sequence,
a feasible image fusion method is necessary, as required by
most reconstruction-based SR techniques. However, the di-
rect interpolations or averages used in combination algo-
rithms for CCD frames cannot generally be applied without
introducing additional blurring or information loss. There-
fore, research on SR for astronomical observations remains
in its infancy.

To acquire more of the details missing as a result of alias-
ing and to improve the resolution for astronomical obser-
vations performed using ground-based or space-based tele-
scopes, a general blind SR reconstruction method based on
pixel reliabilities is proposed in this paper. Further, an SR
astronomical image reconstruction (SRAIR) system, which
is a kind of fully automated and catalogue-independent soft-
ware, including preprocessing, image registration, and SR
reconstruction, is developed. Figure 1 shows the process of
the proposed SR approach. Beginning with preprocessing,
including flat field correction and coarse-to-fine star search-
ing and centering, the sub-pixel positions of the stars in each
observed LR frame are extracted. Then, for image registra-
tion between two CCD frames, the inter-frame transforma-

tion parameters are initially estimated through star-index-
triangle construction and searching, and they are computed
precisely using an iterative process of star matching and pa-
rameter estimation. Moreover, pixels in the LR frames are
re-projected onto a unified HR grid according to the trans-
formation parameters. Next, for SR reconstruction, the pixel
reliabilities are defined and computed. Based on the reliabil-
ity values, the pixel intensities in the HR grid are computed.
Finally, those “holes” without corresponding LR pixels are
filled based on their neighbors’ reliabilities and intensities.
Thus, a HR output image is reconstructed.

The remainder of this paper is organized as follows. In
Sect. 2, related works are reviewed and our contributions
are listed. Section 3 introduces the three processes incorpo-
rated in our SRAIR system as well as the proposed pixel-
reliability-based SR approach. The results of validation ex-
periments conducted using actual telescope observations are
presented and discussed in Sect. 4. Finally, in Sect. 5, our
work is summarized and general conclusions are drawn.

2 Related work and contributions

2.1 Related work

Although many challenges exist regarding the application
of SR to astronomical observations, progressive achieve-
ments have been made in related research. For example,
as an initial attempt to stack image sequences for tip-tilt
correction, Christou (1991) proposed a simple shift-and-
add algorithm that aligns the centers of images succes-
sively captured in a short exposure time and then adds
them. Later, for linear reconstruction of an image from un-
dersampled, dithered data, Fruchter and Hook (2002) de-
veloped a method having the versatility of shift-and-add
while preserving the photometry and resolution. The subse-
quently developed astronomical image processing software
MADmap (Cantalupo et al. 2010) that utilizes a maximum-
likelihood method by overlapping and adding CCD frames
to map cosmic microwave background (CMB) data. To sat-
isfy the resolution requirements for astrophysical analysis,
Renard et al. (2011) analyzed 11 regularization terms and
multiple reconstruction-process parameters using a multi-
aperture image reconstruction algorithm. Those researchers
concluded that SR of astronomical images can be achieved
with increasing performance through the minimal coverage
of object function filling. Orieux et al. (2012) implemented
SR reconstruction of maps for the Spectral and Photomet-
ric Imaging Receiver (SPIRE) instrument of the Herschel



Super resolution for astronomical observations Page 3 of 15 92

observatory, based on a linear approach resulting from a
quadratic-regularized criterion and numerical optimization
tools. The results of their experiments show that the SR re-
construction algorithm consistently yields superior results to
those of a standard processing tool employing a co-addition
method.

In 2012, Jarrett et al. (2012) significantly improved the
spatial resolution of the Wide-field Infrared Survey Explorer
(WISE) imaging by creating new mosaics using a resam-
pling kernel and a deconvolution technique known as the
maximum correlation method (MCM). Additional SR re-
construction results for galaxies were published in their sub-
sequent research (Jarrett et al. 2013). Later, Castellano et al.
(2015) implemented variational super-resolution reconstruc-
tion of astronomical observations based on L1 and L2 reg-
ularizations and tested them on simulated Euclid satellite
images. In the same year, Wang et al. (2015) presented a
real-time, free of posterior data processing and incoherent
SR telescope, that recovers higher local Fourier frequency
components beyond the cut-off frequency of the objective
lens. Obuchi et al. (2016) developed an approximation for-
mula for the cross-validation error of a sparse linear regres-
sion, and tested their model on simulated black-hole image
reconstruction on the event-horizon scale with SR.

These studies constitute significant attempts to apply SR
technology to astronomy, which mostly targeted a specific
problem and used simulated data or space telescope obser-
vations.

2.2 Contributions

Related to the work of the above mentioned studies, the pri-
mary contributions of the present paper are as follows:

1. Presentation of a feasible and general solution, which is
incorporated in our SRAIR system, for high-precision
image registration and blind SR reconstruction of as-
tronomical observations without prior knowledge of the
telescope imaging system or the degradation process;

2. A proposed definition of pixel reliability and its applica-
tion to the SR reconstruction process;

3. Testing of the proposed SR method on actual observed
CCD frames captured by the 1-m telescope at Yunnan
Observatory, China.

3 SR astronomical image reconstruction

With the aim of obtaining further details from several LR
observations, SR reconstruction involves the precise com-
bination of information from different frames into a single
output, to enhance the image resolution without introducing
additional blurring. We implement the proposed SR solu-
tion in the proposed SRAIR system, which can be divided

into three modules as shown in Fig. 1: preprocessing, image
registration, and SR reconstruction. Each of these modules
is described individually in the following.

3.1 Preprocessing

Preprocessing begins with a flat field correction for each
CCD observation and a coarse-to-fine automatic star search-
ing and centering procedure.

The four digital centering algorithms with sub-pixel pre-
cision most frequently used for star centroid detection are
the modified moment (MM) (Stone 1989), median (MD)
(Chiu 1977), derivative search (DS) (Stetson 1979), and
Gaussian fitting (GF) (van Altena and Auer 1975; Auer and
Van Altena 1978) algorithms. DS is especially efficient for
images with crowded stars; however it is the least precise of
the four methods (Stone 1989). MD is superior to DS, but
slightly inferior to MM and GF in terms of precision. Ben-
efiting from image-thresholding techniques, MM can obtain
a centroid precision of the order of milli-arcseconds (Peng
et al. 2008). Although GF typically fails with regard to the
centering of weak stellar images with high background lev-
els, it is frequently used to center well-sampled bright stars
when high-precision centroid estimation is required. Based
on actual CCD images taken by the 1-m telescope at Yun-
nan observatory, our previous work (Li et al. 2009) showed
that the two-dimensional GF formulated in Eq. (1) with no
threshold has the highest precision of the four considered
methods.

G(x,y) = B + H exp

[
− (x − xi)

2 + (y − yi)
2

2σ 2

]
, (1)

where (xi, yi ) is the position of the i-th star center and B , H ,
and σ are the average intensity of the sky background, the
intensity of star center (xi, yi ), and the standard deviation
of the Gaussian function, respectively. Further, the instru-
mental magnitude magi of the i-th star is computed from
(Da Costa 1992)

magi = zpt

− 2.5 log

( ∑
(x−xi )

2+(y−yi )
2≤r2

P(x, y) − Npix × B

)
,

(2)

where the zero point zpt is an arbitrary number to produce
a reasonable output for the magnitudes; this parameter is set
to 25 in our experiments as a typical value (Da Costa 1992).
In addition, P(x, y) is the intensity of the pixel located at
(x, y), which is inside an aperture of radius r . Npix is the
number of pixels in the aperture. B is the average intensity
of the sky background. In this equation, the magnitude is
computed by a negative logarithmic function of the star flux
in parentheses.
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Combining the high efficiency of DS with the precision
advantage of GF, an automatic star searching and centering
technique is applied to each observed CCD frame in the pro-
posed technique. For images containing dozens or hundreds
of stars, DS is first used for rapid star searching and initial
centering; then, two-dimensional GF is applied to compute
the sub-pixel star situations with higher precision. As a re-
sult, all searched star centers (xi, yi ) (supposing a total of
m stars, i.e., i = 1 − m) are sorted by their magnitudes and
recorded in terms of their pixel positions.

3.2 Image registration

To map pixels in several observed LR frames onto a unified
HR grid, the relative geometric transformations between LR
frames should be estimated with high precision. In the pro-
posed method, we compute the transformation parameters of
two matched images with sub-pixel precision based on the
star positions and their matching relationships.

Different from star matching between an observed CCD
image and a stellar catalogue in most other astronomical im-
age registration routines, registration performed in this paper
between two frames emphasizes precision above efficiency.
This is because, on one hand, the number of searched stars
in an image is considerably smaller than the stars in a stel-
lar catalogue; thus, the efficiency difference is unimportant.
On the other hand, for most multi-frame SR algorithms, reg-
istration precision directly and usually decisively influences
the quality of the reconstructed image. Therefore, a triangle-
based star matching technique (Tabur 2007) is implemented
in this paper, so as to obtain an initial estimation of the trans-
formation parameters. Then, an iterative process that alter-
nately matches the star pairs and updates the parameters
to improve the registration precision is used. In summary,
first, any one of observations is selected as a reference im-
age. Then, for the SR reconstruction from several images,
SRAIR matches stars between two frames and aligns one
other image to the reference image, but it does not carry out
registration between an observed CCD image and a stellar
catalogue. Therefore, SRAIR system is a kind of catalogue-
independent software and it does not require the download
of any catalogues.

As a result of the mechanical operation of the telescope
tracking system and the shutter effect of the CCD array,
small inter-frame translation, rotation and scaling effects
may exist in an image sequence {LRi (i = 0 − k)} captured
consecutively during a short period of time on one night.
The affine transformation presented in Eq. (3), which covers
all three geometric transformations, is frequently used to de-
scribe the relationship between the reference frame LR0 and
any other of these frames LRi .{

x0 = aixi + biyi + ci

y0 = dixi + eiyi + fi

i = 0,1,2, . . . , k, (3)

where (x0, y0) and (xi, yi ) are the pixel coordinates in
LR0 and LRi , respectively. For LR0, (ai, bi, ci, di, ei, fi) =
(1,0,0,0,1,0). To estimate the six transformation param-
eters a–f , we require at least three pairs of matched star
coordinates to obtain a unique solution from the equation.
Therefore, a triangle-based matching algorithm, which uses
stars to construct triangles and attempts to find a matched
triangle pair between frames LR0 and LRi , is applied to ob-
tain an initial estimation of parameters ai–fi for image LRi .

The triangle-based algorithm first constructs index trian-
gles via the centered stars in the images and then matches
them by sorting and searching these triangles. Bright stars
can be centered with a generally higher precision than faint
stars. (In our experiments on ground-based observations Li
et al. 2009, the position errors were less than 0.05 pixel for
bright stars with magnitudes from 10 to 14, whereas they
were 0.1–0.9 pixel for faint stars with magnitudes from 14.1
to 18.) Therefore, only n brighter stars are selected from m

searched stars for index triangle construction. Generally, it
is feasible and sufficient to choose 20–30 stars from each
CCD frame for triangle construction (Tabur 2007).

For each triangle T , the ratio of the longest and shortest
sides T .Ratio and the cosine of the smallest angle T . cos θ

are computed. Their product T .Ratio × T . cos θ is then
recorded as the index of this triangle (Tabur 2007). For con-
venient matching, all triangles constructed in an LR frame
are sorted by their indices, and their vertices are recorded.
Once a pair of triangles is found, the corresponding three
star coordinates can be used to compute the initial values of
ai–fi .

Generally, if a greater number of pairs of matched star co-
ordinates can be used, a higher-precision parameter estima-
tion can be obtained, as more information is used in the com-
putation. We use parameters ai–fi to transform LRi to LR0

to find more matched star pairs, and use these matched star
pairs to re-compute ai–fi . The least square method (LSM)
is applied to solve Eq. (1). To improve the estimation pre-
cision, this iterative procedure alternately matches star pairs
and updates the parameters until no further expansion of the
set of matched star pairs occurs. The specific steps of the
image registration process are listed in Fig. 2.

Although the registration routine is provided with this pa-
per, it is to be noted that the SRAIR system allows for the
inclusion of different pre-processing and registration steps,
if these steps can lead to a high-precision estimation of the
six affine transformation parameters ai–fi between frames
at sub-pixel-precision as the SRAIR system does.

3.3 SR reconstruction

According to the inter-frame transformation parameters,
pixels from several LR observations are mapped onto a re-
fined HR grid. Next, to combine the information in multi-
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ple LR frames into one output HR image, a pixel-reliability-
based SR reconstruction method is proposed and applied.

First, to explain the concept of pixel reliability, we review
the imaging process employed by a camera or astronomical
imager. Figure 3 shows an image degradation model (Kat-
saggelos et al. 2007) relating the observed LR images to the
desired HR image. SR reconstruction is an inverse problem
to recover HR details from the LR sequence, which can be
combined with deblurring and denoising techniques to im-
prove the output image quality. It is assumed that the ob-
served LR frames are down-sampled versions of the recon-
structed HR image; thus, the LR image pixels are counter-
parts of the HR image pixels, and the SR reconstruction is
a process of recovering the HR pixels from those in the LR
images. Therefore, the greater the number of appearances of
an HR pixel in the LR sequences, the more information on
this pixel may be obtained, and the higher the reliability of
the pixel intensity in the computation. In contrast, there are

Fig. 2 Triangle-match-based image registration algorithm

some pixels (referred to as “holes” here) in the HR image for
which no counterpart can be found in any of the LR frames;
therefore, we have no information on their intensities.

For a non-hole pixel, i.e., a “reliable” pixel, its reliabil-
ity is defined as the number of times it appears in the LR
sequence. This occurrence frequency can be computed by
counting the points falling into the rectangular lattice rep-
resenting this pixel after mapping. For a hole, however, the
reliability is defined as a negative value, which is equivalent
to the number of reliable pixels in its 3 × 3 neighborhood,
subtracting 8. Figure 4 shows the pixel reliability matrix of
the middle HR grid. First, a unified HR grid is constructed
for the re-projection of different pixels from the LRi frames.
Then, each LR frame LRi is mapped onto the grid accord-
ing to its transformation parameters ai–fi . Subsequently, the
pixel reliability matrix can be counted by considering the
definitions of the pixel reliabilities.

It is important to compute the pixel intensities on the inte-
ger grid coordinates in the reconstructed HR image based on
data on the non-integer positions of the points obtained from
several different LR observations. Classical non-uniform in-
terpolation algorithms calculate the HR pixels using tra-
ditional interpolating functions such as the nearest, bilin-
ear, bi-cubic, and normalized sinc functions. However, these

Fig. 4 HR grid and definition of pixel reliability

Fig. 3 Imaging degradation
model relating LR images to HR
images
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Fig. 5 Sequential hole filling according to reliabilities

methods ignore inevitable registration errors and cannot ef-
fectively handle the possible “holes” caused by insufficient
LR frames or the high probability of pixel overlaps for map-
ping on the HR grid. The proposed pixel-reliability-based
SR algorithm is tolerant of mapping errors within a 1/q (q is
the magnification factor) pixel width for the LR images, as
well as a high “hole” proportion larger than 70%.

In the proposed pixel-reliability-based SR approach, the
HR pixel intensities can be computed based on their relia-
bilities. The intensities of non-hole pixels in the HR grid are
assigned as the average intensities of the pixels mapped onto
their rectangular lattices. The result of this average has zero
dependence on the specific positions of any points in the lat-
tice; therefore, the mapping errors may be limited to within
one HR lattice without influencing the result. Thus, the pro-
posed SR algorithm tolerates registration errors within one
HR pixel. That is, if we reconstruct an image from the size
M × N to size qM × qN , a registration error within 1/q

pixel width of the input images is allowed. This is achievable
in our image registration process with sub-pixel-precision.

After all the intensities of the non-hole pixels are de-
termined (we refer to this as “filling”), the holes are then
filled by the weighted average of their reliable neighbors,
the weights of which are their reliabilities. Thus,

Phole =
8∑

i=1

wiPi/

8∑
i=1

wi, (4)

where Phole and Pi are the pixel intensities of the center
hole and its eight neighbor pixels in its 3 × 3 neighborhood,
respectively, and wi is the corresponding reliability of Pi for
a non-hole pixel. Note that wi is zero for a hole or an outside
neighbor of an image boundary.

We use an iterative hole-filling strategy in the proposed
SR algorithm, which divides holes into three levels accord-
ing to their reliabilities: 0 to −3, −4 to −7, or −8, and
fills holes in turn from 0 to −8 with three or more repli-
cate scans, as shown in Fig. 5. After a hole has been filled
(i.e., it has been assigned a value), its reliability is changed
to 0 as a flag. Holes with reliabilities from 0 to −7 can be
calculated from Eq. (4), because there exists at least one “re-
liable” pixel in their neighborhood providing some clues as
to their values. However, if a hole has a reliability of −8, this
means that none of its eight neighbors are available (because
they are themselves “unfilled” holes or they are outside an
image boundary). Therefore, they cannot be computed using

Table 1 Specifications of telescope and CCD chip

Specifications Parameters

Approximate focal length 1300 cm

F -ratio 13

Diameter of primary mirror 100 cm

CCD field of view 6.4′ × 6.4′

Pixel size 24μ × 24μ

CCD array size 1024 × 1024

Angular extent per pixel 0′′.37/pixel

Eq. (4) and should be left until some of their neighbors are
assigned pixel intensities (as for the bottom-most right pixel
in Fig. 5). The average intensities of their filled neighbors
are assigned to these “deep” holes with reliabilities of −8.
If they join together as blocks, we must fill them from the
periphery to the center through several scans; however, this
scenario rarely arises for an actual observed sequence. Fre-
quently, an HR image will be reconstructed within 1 to 3
scans for “filling” holes even for a high “hole” proportion of
74% (with 6 frames used and q = 4).

4 Experimental results

4.1 Dataset

Although aligning and stacking techniques for astronomical
observations have been studied for several years, most pre-
vious work has focused on improving the SNR or handling
under-sampled images for simulated data or sequences cap-
tured by space telescopes (Fruchter and Hook 2002; Renard
et al. 2011; Castellano et al. 2015; Obuchi et al. 2016). In
this study, we used actual ground-based observations per-
formed using the 1-m telescope at the Yunnan Observatory.
The experiment was conducted on an image sequence of 18
frames observed on the night of January 2nd, 2004, with
a 70-s exposure time and a zenith distance of 10–30 de-
grees. The specifications of the telescope and its attached
CCD chip are listed in Table 1.

In fact, we tested our algorithm on actual image se-
quences observed from 2004 to 2016. For almost all these
observed sequences, the proposed SRAIR system produced
preferable resolution enhancement results compared to other
systems mentioned in Sect. 4.4. The dataset presented in this
paper is one of the typical tested sequences among them.

4.2 Performance metrics

The proposed SR reconstruction solution for astronomical
observations is integrated in the SRAIR system, which was
developed and tested in the MATLAB R2015a and Mi-
crosoft Visual Studio VC++6.0 environments.
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To evaluate the performance of the proposed approach,
three commonly used indexes for image quality evaluation
were computed in our experiments.

4.2.1 Root mean square (RMS) contrast

The root mean square (RMS) contrast is defined as the stan-
dard deviation of the pixel intensities (Peli 1990) and can be
computed according to

RMS =
√√√√ 1

n1 × n2

n1∑
i=1

n2∑
j=1

(Iij − I )2, (5)

where the intensities Iij are the i-th j -th element of the two-
dimensional image of size n1 by n2. Generally, a larger im-
age contrast yields greater object distinguishability.

4.2.2 Image entropy

The Shannon entropy (Shannon 1948) defined in Eq. (6) is
often used for image assessment, to indicate the amount of
information contained in an image (Gu et al. 2016). High-
entropy images usually have larger contrast and contain
more detail. Moreover, the entropy of a focused image is
generally larger than that of an unfocused image (Thum
1984).

Entropy = −
K∑

k=1

pk log2(pk), (6)

where K is the grayscale number (for a 16-bit FITS image,
K = 65535), pk is the probability of gray level k, and log2
is the base 2 logarithm.

4.2.3 Full width at half maximum (FWHM)

For astronomical observations, the full width at half maxi-
mum (FWHM) is a measure of the observation conditions.
A smaller FWHM value corresponds to a sharper Gaus-
sian profile and less blurring of astronomical objects such as
stars. For a normal distribution N(x0, σ ), the FWHM shown
in Fig. 6 is related to the standard deviation σ by Eq. (7)
(Stone 1989). The value of σ can be estimated by fitting
the star profile to the two-dimensional Gaussian distribution
formulated using Eq. (1).

FWHM = 2
√

2 ln 2σ ≈ 2.355σ. (7)

4.3 Experimental results

4.3.1 Automatic star searching and centering

To evaluate the star position precision, we searched all 18
frames in a sequence, although only eight among them were

Fig. 6 FWHM of normal distribution N(x0, σ ) of star profile. B , x0,
and H indicate the average intensity of the background, the center po-
sition of the star, and the intensity of the star center, respectively

used for the image registration and SR reconstruction. Fig-
ure 7 shows the results of the star searching and centering for
the reference image of eight used frames. For this frame, 112
stars were initially searched using DS. Then, 87 among them
were centered using GF; they are marked by green squares
and numbered in yellow in the right image of Fig. 7.

Among these 87 centered stars, 70 common stars in all
18 frames with magnitudes from 10.2 to 17.6 were cho-
sen to evaluate the average errors in the star positions. Fig-
ure 8 relates the average centering errors of the 70 stars
to their magnitudes. The errors in both the x and y direc-
tions of all these stars have a precision of within 0.5 pixel.
In particular, the error is 0.2 pixel for the 50 brightest stars
(magnitudes < 16). Thus, the required sub-pixel star center-
ing precision was achieved for high-precision image regis-
tration.

4.3.2 Star matching and image registration

The brightest 20 stars were used to construct the index trian-
gles for each frame. Then, all centered stars were matched
between the reference frame and each of the other frames
shown in Fig. 9. The inter-frame transformation parameters
were calculated according to the coordinates of the matched
star positions and recorded in a log file.

4.3.3 SR reconstruction

Although the number of input images can be assigned to any
positive integers, it doesn’t mean that the higher the number
of input images, the better the quality of the output. Due to
different seeing conditions and various SNR degrees caused
by atmospheric turbulence during the observation, as well as
other complicated factors leading the image degradation, fu-
sion of too many images may degrade the reconstructed out-
put instead, let alone the significantly decreasing of system
performance and efficiency accompanying with the increas-
ing number of input image frames. Considering the compu-
tation complexity and an acceptable output result, only eight
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Fig. 7 Automatic star searching and centering for reference image. The searched stars are marked by green squares and numbered in yellow in the
right sub-window with their position parameters listed in the left window

Fig. 8 Average position errors of 18 frames for 70 centered stars

frames from the 18 observations with similar seeing condi-
tion and comparable SNR degrees were used for the SR re-
construction. The results of the SR reconstruction and sev-
eral other methods are displayed in Fig. 10 (the magnifica-
tion factor q = 2). Four local areas numbered in the squares
were magnified; their 3D maps are shown below. For better

display on the screen, these areas are shown with grayscale
stretching according to their local grayscale ranges. How-
ever, this presentation does not correspond to any changes
in the pixel intensities of the output FITS images.

Note that the magnification factor q is the only parameter
to be assigned by SRAIR users at the SR step. By a magni-
fication factor q , input images with the resolution M × N

will be SR reconstructed to the resolution qM × qN . Theo-
retically, q can be assigned to any integers larger than 1 ac-
cording to the user’s specific needs. However, larger value of
q requires more information from the input sequence which
means higher numbers of input images, or otherwise higher
“hole” proportions which will degrade the performance and
efficiency of the system. We tested q from 2 to 6 in our ex-
periments. If q = 6, SR reconstruction of a two-star local
area of the size 40×40 to the output size 240×240 requires
5–7 seconds on a common personal notebook with Intel dou-
ble i7 CPU 2.70 GHz 2.70 GHz, a memory of 16 GB RAM
and the 64 bit Windows 10. On the other hand, experiments
show that by using the iterative “hole-filling” strategy, the
SRAIR system can well process a high “hole” proportion of
74% (with 6 frames used for q = 4). In sum, in the SRAIR
system, to get acceptable outputs and efficiency, q is recom-
mended to be set in the range of 2 to 4.

To further illustrate the significant difference between
the proposed SR approach and classical interpolation al-
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Fig. 9 Star matching and image registration. The searched stars are circled in red for each frame and matched in with blue lines between the
reference frame and each frame in the sequence

gorithms or traditional aligning and stacking techniques,
Fig. 11 shows an output comparison. The seven images in
the top row are the same local areas clipped from an ob-
served sequence recorded in 16-bit flexible image trans-
port system (FITS) format (intensity range: 0–65535). Some
white points are apparent in Frames 1, 3, and 6, which may
indicate cosmic rays. The middle row displays the outputs
of various methods (the identifying labels are at the col-
umn bottoms). To better show the differences, the local ar-
eas within the yellow boxes are magnified and their cor-
responding three-dimensional (3D) intensity maps are dis-
played in the bottom row. Figures 11(a) and 11(b) are tra-
ditional interpolations of Frame 1, which is viewed as the
reference frame. As only Frame 1 is used, the details in the
other frames, such as the white points in Frame 3 and 6,
cannot be displayed. Interpolation techniques cannot essen-
tially improve the resolution of an image without access
to additional information beyond that provided by the im-
age. On the other hand, to obtain details from different ob-
servations, classical weighted average or drizzle techniques
(Fruchter and Hook 2002) used by the AstroimageJ (AIJ)
(Collins et al. 2017) and DeepSkyStacker (DSS) (Gallaway
2016; German et al. 2005) systems combine multiple input
frames into a single image through selection, alignment, and
stacking (Figs. 11(c)–(e)). The white points in Frame 1, 3,
and 6 are all indicated in Figs. 11(c)–(f). Among these out-
puts, AstroimageJ introduces obvious blurring apparent in

Fig. 11(c), while our SRAIR system (Fig. 11(f)) produces
sharper white points and finer backgrounds than the results
obtained using the two DSS methods (Figs. 11(d) and 11(e)).
Further, the 3D maps in the bottom row indicate that only
the SRAIR system preserves the original intensity values
from the input frames without introducing smoothness or
intensity loss, as the pixel intensities of the input frames in
this local area vary from 362 to 1161. To summarize, SR re-
construction techniques differ considerably from traditional
aligning and stacking methods for resolution enhancement,
as more details are reconstructed from different observations
and the original input information is preserved.

4.4 Comparison

Seven methods were compared in our experiments, i.e.,
nearest interpolation (Nearest), normalized sinc function in-
terpolation (Normalized Sinc), register and average (Reg-
ave), the stacking and combining used in the AstroimageJ
System (AstroimageJ) (Collins et al. 2017), the two Drizzle
methods (Fruchter and Hook 2002) used in the DeepSkyS-
tacker System (DSS Mean Gallaway 2016 and DSS Entropy
German et al. 2005), and the proposed SR solution (SRAIR).

The results of four local areas magnified by these seven
methods are shown in Fig. 10. No. 1 is an area with a faint
star and several white points due to cosmic rays or noise.
No. 2 is an area with three faint stars and one white point.
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Fig. 10 SR reconstruction. Four local areas are magnified (with their 3D maps shown beneath) for better comparison of the different outputs. The
input frames have sizes of 1024 × 1024. After twofold magnification, the output image size is 2048 × 2048 (i.e., q = 2)
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Fig. 11 Comparison of output images from different techniques. Top
row: Seven input frames, where Frame 1 is the reference frame. Middle
row: Twofold-magnified results of different methods. The local areas,
which contain two white points from Frames 3 and 6, are magnified

and contrast stretched by a unified scale in the yellow boxes. Bottom
row: Intensity 3D maps of local areas in yellow boxes (for 16-bit FITS
image, pixel intensity range: 0–65535)

No. 3 is an area with a bright star and a faint star close to-
gether. No. 4 is a faint star and there is extremely low SNR;
the star can barely be distinguished from the background
in the input frames. As for the visual effects, the two in-
terpolation algorithms expand the image size from the ref-
erence image, but cannot reconstruct details from multiple
inputs in one image; the white points in areas No. 1 and 2
from the non-reference frames are not shown in the out-
put. Thus, these methods cannot radically improve the im-
age resolution. The Reg-ave and AstroimageJ methods de-
crease the noise by stacking and averaging several frames,
but inevitably add blur to the images and smooth the im-
age details. The DSS Mean and DSS Entropy approaches
have better outputs than the Reg-ave and AstroimageJ in
terms of detail preservation. This is achieved by using Driz-
zle for stacking. However, severe information losses on the
pixel intensities still occur; the intensity decreases for the
white points in areas No. 1 and 2, and the smoothness for
the faint star in the area No. 4. As SR combines samples
from each LR observation, white points recorded in any of
the other frames are displayed in the output of the SRAIR
result. Moreover, sharper profiles are clearly apparent for
the white points and finer backgrounds in the 3D maps of
Fig. 10(e) compared to those of Figs. 10(a)–(d), in which
blurring and smoothness are introduced. Relatively speak-

ing, the SRAIR approach reconstructs the image at a higher
resolution level and preserves more details from original in-
put sequence with the least degree of information loss.

Preferable outputs using the proposed SR method can
also be observed in Figs. 12 and 13, which display section
curves in the x and y directions of area No. 3 (with a faint
star near a bright star) and area No. 4 (with an extremely
faint star) in Fig. 10. In Fig. 12, the SRAIR system produces
a sharper Gaussian profile for the bright star than the others,
as well as a slightly larger fluctuation caused by the faint
star. In Fig. 13, as the intensities of this star area are very
close to the background, all curves are influenced signifi-
cantly by the noise. Among these curves, the SRAIR result
retains the richest details from the original frames (which
may be represented by two interpolation methods), while the
other four combining methods obviously smooth the fluctu-
ations.

To quantitatively evaluate the performance of the pro-
posed SR solution, the three indexes, i.e., RMS contrast, en-
tropy and FWHM, defined by Eqs. (4)–(6) in Sect. 4.2 were
used for comparison. Five methods for stacking and combin-
ing astronomical sequences were compared, namely, Reg-
ave, AstroimageJ, DSS Mean, DSS Entropy, and SRAIR.

We chose 58 stars with magnitudes of 10–18 among the
87 automatically searched stars. The other 29 stars were



92 Page 12 of 15 Z. Li et al.

Fig. 12 Section curves in x and y directions on the intensity peak in area No. 3

Fig. 13 Section curve in x and y directions on the intensity peak in area No. 4

Fig. 14 Local selected image sequence of star area

discarded, because they were either too close to the image
boundary, next to some high-level noise points, or influenced
severely by another nearby star. For each star, a square local
area sequence was selected for combination or SR recon-
struction. Figure 14 shows such a selected local sequence
and the outputs of the five afore-mentioned approaches.

For each reconstructed local star area, three indexes were
calculated in pixels. Figures 15, 16, 17 relate these indexes

to star magnitudes, among which Fig. 15 uses a relative
RMS contrast (which comes from raw RMS contrast val-
ues minus the corresponding RMS values of the Reg-ave
method) to render the difference distinguishable. These fig-
ures show that, in general, the SRAIR system produces the
largest RMS contrast and image entropy, as well as the
smallest FWHM value.

As the values of these indexes in the bright and faint star
areas differ considerably, we divided the selected stars into
two groups according to their magnitudes: bright stars with
magnitudes 10–14 (SNR = 1240–99) and faint stars with
magnitude 14.1–18 (SNR = 99 − 5).

Tables 2, 3, 4 list the mean values of these indexes for
bright star areas, faint star areas, and all areas, respectively.
Among the five image stacking and combination methods,
the proposed SRAIR yields the largest mean values for the
RMS contrast and entropy, and the smallest mean for the
FWHM, whether for bright or faint stars.
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Fig. 15 Relationship between relative RMS contrast and star magni-
tude. To better show the differences, the relative RMS contrast is used,
which means the RMS from the Reg-ave is subtracted to all corre-
sponding RMS contrast values

Fig. 16 Relationship between local entropy and star magnitude

According to our experiments, the proposed SRAIR so-
lution achieves preferable resolution enhancement results,
which exhibit higher star distinguishability with more de-
tails and information and less blurring.

Last, we investigated the stability of photometry and the
preservation of SNR for outputs from different methods.
Figure 18 relates star fluxes in various output images to their
magnitudes. Curves in different colors represent different
methods, among which the yellow one indicates the near-
est interpolation of the reference image as a representation
of the input images. The coincidences of these curves mean
that stars have consistent fluxes in all output images from
these methods and the input images. The flux of a star here
is computed by using the method of Da Costa (1992).

Fig. 17 Relationship between FWHM and star magnitude

Fig. 18 Relationship between flux and star magnitude

The SNR is commonly used when referring to bright stars
or faint targets. However, on the basis of the following con-
siderations, we use star magnitudes computed from the in-
put images themselves instead of the star SNR in this paper.
On the one hand, the computation of SNR for astronomi-
cal observations requires extra information or specifications
about the imaging system, while the SRAIR system is de-
signed as a blind SR reconstruction tool for astronomical se-
quences independent of any instruments. On the other hand,
experiments show that the observed input images have an
almost uniform backgrounds after preprocessing such as flat
field correction, which indicates a consistent signal extracted
from noise. Therefore, star magnitudes computed by Eq. (2)
in Sect. 3.1 reflect the SNR of stars quite well.

Figure 19 shows the SNR comparison of all the meth-
ods. This figure is really similar with the flux comparison in
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Table 2 Local RMS contrasts
(×100) of stars (in pixels) Combining approach Reg-ave Astro-imageJ DSS mean DSS entropy SRAIR

Bright star 0.9592 0.9720 0.9719 0.9727 0.9929

Faint star 0.0195 0.0192 0.0192 0.0192 0.0211

All 0.1686 0.1704 0.1704 0.1706 0.1754

Table 3 Local image entropy of
stars (in pixels) Combining approach Reg-ave Astro-imageJ DSS mean DSS entropy SRAIR

Bright star 6.4706 6.4993 6.5464 6.5457 6.8014

Faint star 3.4302 3.6318 3.8597 3.8493 4.5886

All 3.9128 4.0870 4.2862 4.2773 4.9398

Table 4 FWHM of stars (in
pixels) Combining approach Reg-ave Astro-imageJ DSS mean DSS entropy SRAIR

Bright star 11.8828 11.8752 11.8194 11.8050 11.5727

Faint star 11.7591 11.9912 11.9293 11.9382 11.5618

All 11.7808 11.9708 11.9100 11.9149 11.5637

Table 5 The corresponding values of star magnitude and SNR

Magnitude 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18

SNR 1239.5 931.1 692.7 446.1 310.1 202.2 132.5 98.5 64.5 40.9 28.2 19.5 10.3 8.8 8.4 5.3

Fig. 19 Relationship between SNR and star magnitude

Fig. 18, because the SNR is computed as a function of the
star flux and the star flux is related to the star magnitude di-
rectly by Eq. (2). Table 5 lists the data of star magnitudes
and their corresponding SNR.

5 Conclusions

This paper proposed a general blind SR reconstruction so-
lution for astronomical observations based on the definition

of pixel reliabilities. We developed the SRAIR system and
combined the flat field correction, automatic star search-
ing and centering, iterative image registration and pixel-
reliability-based SR algorithm into a complete process. In
the proposed approach, beginning with high-precision star-
centering techniques and sub-pixel-accuracy image registra-
tion, samples in several LR CCD frames are aligned and
mapped onto a unified up-sampled grid to reconstruct an HR
output image, so as to combine information from multiple
observations. Experiments on actual observed frames and
comparison with state-of-the-art systems verified the effec-
tiveness of the proposed method. Richer details and sharper
profiles of stars were obtained following implementation of
the proposed SR reconstruction process.

The application of the proposed SR approach may pro-
vide more opportunities for new discoveries from astronom-
ical image sequences and may also contribute to enhancing
the capabilities of most spatial or ground-based telescopes.
Potential applications include detecting of cosmic rays, dis-
tinguishing of dual active galactic nuclei, black-hole image
reconstruction, and study of galaxies. The SRAIR system
can be used as a general astronomical image resolution en-
hancement tool for sequences captured under a relatively
stable observation conditions such as invariant imaging sys-
tem, consistent atmospheric distortions, and common expo-
sure time. Our future related research will be regarding the
registration of different pixel intensity levels and the SR re-
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construction for images with variable astronomical seeing,
which may be caused by atmospheric turbulence.
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